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1 Introduction

The theory of (ϕ,Γ)-modules was developed by Fontaine ([1]) to study local
Galois representations. It plays an important role in the study of families of
Galois representations and p-adic Langlands correspondence.
The main result of the theory is that (ϕ,Γ)-modules are equivalent to Galois
representations. The rough idea is to encode the difficult deeply ramified part
of Galois theory into complicated rings. In other words, representations of
complicated groups with simple coefficients are traded with representations of
simple groups but with complicated coefficients.
The key part of the theory is then the construction of these complicated coef-
ficient rings. It is based on the theory of fields of norms, which is a machine to
switch between characteristic 0 and characteristic p worlds. There is another,
probably more well-known, theory that serves the same purpose, namely per-
fectoid fields. Indeed, theory of fields of norms can be viewed as a deperfection
of perfectoid fields. The coefficient rings appearing in (ϕ,Γ)-modules are cer-
tain infinitesimal lifting of fields of norms along the p-direction, in technical
terms, they are Cohen rings of fields of norms.
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The insight of this work is to put these rings in a world in which they naturally
live, namely the framework of prisms as developed by Bhatt and Scholze ([2]).
More precisely, these mysterious rings have natural integral structures which
can be viewed as prisms, and the rings themselves are viewed as a structure
sheaf on the prismatic site. Then (ϕ,Γ)-modules are vector bundles (with extra
structures) on the prismatic site. This perspective is useful since prismatic sites
are very rich. In particular, we can encode infinitesimal lifting of perfectoid
fields into the prismatic world as well, which links with Galois representations.
We can deduce the classical equivalence of Galois representations and (ϕ,Γ)-
modules from this perspective, namely they are both equivalent to a third,
arguably more fundamental object, the prismatic F-crystals. In summary, we
have

Theorem 1.1. Let k be a perfect field of characteristic p, and K be a finite ex-
tension of W (k)[ 1p ]. Then (ϕ,Γ)-modules over AK are equivalent to prismatic

F-crystals in O∆[
1
I
∆
]∧p -modules over (OK)∆.

Moreover, continuous finite free Zp-representations of the absolute Galois
group GK are also equivalent to prismatic F-crystals in O∆[

1
I∆
]∧p -modules over

(OK)∆.

Corollary 1.2. The category of continuous finite free Zp-representations of
the absolute Galois group GK is equivalent to the category of (ϕ,Γ)-modules
over AK .

See the main text for explanations of the notation.
The equivalence of Galois representations and prismatic F-crystals in O∆[

1
I
∆
]∧p -

modules is also contained in the work of Bhatt and Scholze [3]. The proof for
(ϕ,Γ)-modules follows the same line as the proof for Galois representations.
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Convention

We follow the notation of [2]. Fixing a prime p, a δ-ring is a Z(p)-algebra R
equipped with a map δ : R → R such that δ(0) = δ(1) = 0 satisfying

δ(x+ y) = δ(x) + δ(y) +
xp + yp − (x+ y)p

p

δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y)
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for any x, y ∈ R. We write

φ(x) := xp + pδ(x)

which is a ring homomorphism lifting the Frobenius. An element x of a δ-ring R
is called distinguished if δ(x) is a unit.
Following the notation of Scholze, for an integral perfectoid ring R, we denote
by R♭ := limφR/p the tilt of R. We can also identify R♭ with limx→xp R as a
multiplicative monoid, then there exists a natural monoid map R♭ → R given
by

x = (x0, x1, · · · ) 7→ x♯ := x0,

where xp
i+1 = xi, so (x0, x1, · · · ) represents an element of limx→xp R. As a

standard notation in p-adic Hodge theory, we denote

Ainf(R) := W (R♭).

There exists a canonical surjection of rings

θ : W (R♭) → R

characterized by θ([x]) = x♯. Moreover, we know that Ker(θ) is principal and
is generated by any distinguished element in the kernel, see [2] Lemma 3.8,
Lemma 2.33 and Lemma 2.24 for example. In particular, if R contains a com-
patible system of p-power roots of unit ζpn , then

ǫ := (1, ζp, ζp2 , · · · ) ∈ R♭

and 1 + [ǫ]
1
p + · · ·+ [ǫ]

p−1
p generates Ker(θ).

We will use the theory of diamonds as developed in [4] and [5] in a rudimentary
way. Recall that a diamond is a sheaf on the pro-étale site of characteristic p
perfectoid spaces which can be written as the quotient of a representable sheaf
by a pro-étale equivalence relation. There is a functor from analytic adic spaces
over Spa(Zp) into diamonds, which sends

X −→ X⋄

where X⋄ is the sheaf whose value on a characteristic p perfectoid space S is
the set of untilts S♯ of S together with a map S♯ → X of adic spaces. When
X = Spa(R,R+) is affinoid, we sometimes denote

Spd(R,R+) := Spa(R,R+)⋄.

When A = R⊗S R and M is an R-module, we will write

M ⊗R A

when A is viewed as an R-algebra with respect to the first factor, i.e. the
R-algebra structure is R → R⊗S R is x → x⊗ 1. Similarly, we write

A⊗R M
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when A is equipped with the R-algebra structure with respect to the second
factor. The convention applies also to other situations when A has two structure
maps, such as A = R⊗̂SR.

2 Prisms

We recall the basic theory of prisms as developed in [2], and introduce the
primary examples that will be relevant to us.

2.1 Definitions and Examples

Definition 2.1. A prism is a pair (A, I), where A is a δ-ring, and I is an
ideal of A such that A is derived (p, I)-complete, I defines a Cartier divisor on
Spec(A), and p ∈ I + φ(I)A. The category of prisms has objects the prisms,
and the arrows are δ-ring maps preserving the given ideals.
A prism (A, I) is called bounded if A/I[p∞] = A/I[pn] for some n.

Definition 2.2. Let X be a p-adic formal scheme, then the (absolute) pris-
matic site X∆ of X has objects bounded prisms (A, I) together with a map of
formal schemes Spf(A/I) → X. The arrows are morphisms of prisms pre-
serving the structure map to X. An arrow (A, I) → (B, J) is a cover if B is
(p, I)-completely flat over A.
When X = Spf(R) is affine, we simplify the notation by writing R∆ := X∆.

Example 2.3. Let k be a perfect field of characteristic p, then

(W (k)[[q − 1]], ([p]q))

is a prism in W (k)
∆
, where [p]q := qp−1

q−1 , and the δ-structure is given by the

usual δ-structure on W (k) and δ(q) = 0. It is clearly (p, q − 1)-complete,
which is equivalent to being (p, [p]q)-complete as [p]q ≡ p mod(q− 1) and [p]q ≡
(q − 1)p−1 mod p. Moreover, from [p]q ≡ p mod(q − 1) we have

p = [p]q + (q − 1)α

for some α ∈ W (k)[[q − 1]]. Applying φ to both sides, we have

p = φ([p]q) + (qp − 1)φ(α) = φ([p]q) + [p]q(q − 1)φ(α),

proving p ∈ ([p]q, φ([p]q)).

Example 2.4. Let C be the completion of algebraic closure of W (k), and OC its
ring of integers. Then (W (O♭

C
),Ker(θ)) is a prism, where θ : W (O♭

C
) → OC

is the canonical map characterized by θ([α]) = α♯. We choose a compatible
system {ζpn} of p-power roots in C, and let

ǫ := (1, ζp, ζp2 , · · · ) ∈ O♭
C,
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then it is well-known that 1 + [ǫ
1
p ] + [ǫ

2
p ] + · · ·+ [ǫ

p−1
p ] generates Ker(θ), and

we have a map of δ-rings

W (k)[[q − 1]] → W (O♭
C)

by sending q to [ǫ
1
p ], then [p]q is mapped to 1 + [ǫ

1
p ] + [ǫ

2
p ] + · · ·+ [ǫ

p−1
p ], and

the condition p ∈ (Ker(θ), φ(Ker(θ))) follows from the same condition for the
prism (W (k)[[q − 1]], ([p]q)).
Moreover, W (O♭

C
) is obviously (p, [̟])-complete, where ̟ ∈ O♭

C
is any nonzero

topologically nilpotent element of O♭
C
. This implies (p,Ker(θ))-completeness

since 1 + [ǫ
1
p ] + [ǫ

2
p ] + · · ·+ [ǫ

p−1
p ] mod p is such a ̟.

We made use of an embedding W (k)[[q− 1]] → W (O♭
C
) sending q to [ǫ

1
p ] in the

previous example. This is not standard, and from now on we view W (k)[[q−1]]
as embedded into W (O♭

C
) using the embedding

W (k)[[q − 1]] → W (O♭
C)

which sends q to [ǫ]. It is the φ-twist of the previous embedding.
We now recall the theory of fields of norms, see [6] for details. Let K be
a finite totally ramified extension of W (k)[ 1p ] contained in a fixed completed

algebraically closure C of W (k)[ 1p ], then we can associate the cyclotomic tower

K ⊂ K(ζp) ⊂ K(ζp2) ⊂ · · ·

the field of norms EK , whose ring of integers E
+
K can be characterized as a

subring of O♭
K(ζp∞)∧ , namely

E
+
K = {(αn)n ∈ lim OK(ζp∞)∧/p | αn ∈ OK(ζpn )/p for n ≫ 0} ⊂ O♭

K(ζp∞)∧ .

Then E
+
K is a complete discrete valuation ring of characteristic p, which by con-

struction contains E+
W (k)[ 1p ]

. Moreover, we know that EK is a finite separable

extension of EW (k)[ 1p ]
.

We can compute E
+
W (k)[ 1p ]

explicitly as

E
+
W (k)[ 1p ]

= k[[ǫ− 1]] ⊂ O♭
W (k)[ 1p ](ζp∞)∧ ⊂ O♭

C.

We observe that

W (k)((q − 1)) := W (k)[[q − 1]][
1

q − 1
]∧p ⊂ W (C♭)

is a Cohen ring of EW (k)[ 1p ]
. By the henselian property of W (k)((q − 1)), the

extension
EW (k)[ 1p ]

⊂ EK ⊂ C
♭
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lifts canonically to
W (k)((q − 1)) ⊂ AK ⊂ W (C♭)

for a Cohen ring AK of EK . Let

A
+
K := AK ∩W (O♭

C),

then as W (k)((q − 1)) ⊂ W (C♭) is invariant under the lift of Frobenius on
W (C♭), so is A+

K by naturality of AK being extension of W (k)((q − 1)) inside
W (C♭). This equips A

+
K with a δ-ring structure such that the embedding

A
+
K ⊂ W (O♭

C
) is a δ-ring map. The inclusion W (k)[[q − 1]] ⊂ A

+
K enables us

to view [p]q as elements of A+
K . We have the following lemma.

Lemma 2.5. For every n ∈ N, (A+
K , (φn([p]q))) is a prism.

Proof. Being a subring of W (O♭
C
), A+

K is an integral domain, so φn([p]q) is
a non-zero divisor. Since (W (k)[[q − 1]], ([p]q)) is a prism, we have p =
a[p]q + bφ([p]q) for some a, b ∈ W (k)[[q − 1]]. Applying φn to it, we have
p = φn(a)φn([p]q)+φn(b)φn+1([p]q), proving p ∈ (φn([p]q), φ(φ

n([p]q))). Lastly,
A

+
K is p-complete by construction and A

+
K/p ∼= E

+
K , which is a complete DVR.

We have φn([p]q) ≡ (q − 1)p
n(p−1) mod p, which is a pseudouniformizer in

E
+
W (k)[ 1p ]

∼= k[[q − 1]], hence a pseudouniformizer in E
+
K . This proves that A+

K

is (p, φn([p]q))-complete.

We record some simple algebraic properties of the prism (A+
K , (φn([p]q))).

Lemma 2.6. The canonical inclusions A+
K → W (O♭

C
) and W (k)[[q− 1]] → A

+
K

are flat.

Proof. A
+
K is noetherian as it is of finite type over W (k)[[q − 1]]. By Re-

mark 4.31 of [7], it is enough to prove flatness of the maps after reduction
mod p, which are E

+
K → O♭

C
and k[[q − 1]] → E

+
K . They are injective maps

from DVRs to integral domains, hence flat.

Corollary 2.7. A
+
K/φn([p]q) is p-torsionfree, so the prism (A+

K , (φn([p]q)))
is bounded.

Proof. We have that

W (k)[[q − 1]]/φn([p]q) → A
+
K/φn([p]q)

is flat since it is the base change of W (k)[[q − 1]] → A
+
K . We observe that

W (k)[[q − 1]]/φn([p]q) ∼= W (k)[ζpn ],

which is p-torsionfree. Then the flatness tells us that A
+
K/φn([p]q) is also p-

torsionfree.

Lemma 2.8. The map φ : A+
K → A

+
K is flat.

Proof. Again by Remark 4.31 of [7], it is enough to show the flatness mod p,
which is the Frobenius φ : E+

K → E
+
K . It is an injective map of DVRs, so

flat.
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2.2 Perfect prisms and perfectoid rings

There is an important class of prisms that has close connection with perfectoid
rings.

Definition 2.9. A prism (A, I) is called perfect if φ is an automorphism of A.

We have a natural perfection functor for prisms.

Proposition 2.10. ([2] Lemma 3.8) Let (A, I) be a prism, and

Aperf := (colim
φ

A)∧(p,I),

then (Aperf , IAperf ) is a perfect prism. Moreover, it is the universal perfect
prism over (A, I).

Perfect prisms are canonically equivalent to integral perfectoid rings as defined
in [7]. We recall the definition of integral perfectoid rings first.

Definition 2.11. A ring R is integral perfectoid if it is π-adically complete for
some π ∈ R such that πp divides p, the Frobenius on R/p is surjective, and the
canonical map θ : W (R♭) → R has principal kernel.

The desired equivalence with perfect prisms is the following theorem.

Theorem 2.12. ([2] Theorem 3.9) The category of perfect prisms is equiva-
lent to the category of integral perfectoid rings. The equivalence functors are
(A, I) → A/I, and R → (W (R♭),Ker(θ)).

There is another notion of perfectoid rings used in the theory of perfectoid
spaces. We recall the definition and compare it with integral perfectoid rings.
Recall that a complete Tate ring is a complete Huber ring that contains a
topological nilpotent unit. In more concrete terms, it is a complete topological
ring R which contains an open subring R+ whose topology is π-adic for some
element π ∈ R+, and R = R+[ 1π ]. For any Huber ring R, we denote by R◦ the
subring of power bounded elements.

Definition 2.13. A perfectoid Tate ring is a uniform complete Tate ring R,
i.e. R◦ is bounded, such that there exists a topological nilpotent unit π ∈ R◦

such that πp divides p, and Frobenius is surjective on R◦/πp.

We have the following comparison between the two notions of perfectoid rings.
Recall that a ring of integral elements of a Huber ring R is an open and inte-
grally closed subring R+ of R◦.

Proposition 2.14. ([7] Lemma 3.20) Let R be a complete Tate ring, and
R+ ⊂ R be a ring of integral elements. Then R is a perfectoid Tate ring if and
only if R+ is bounded in R and integral perfectoid.
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The proposition characterizes integral perfectoid subrings of a perfectoid Tate
ring. We can also build a perfectoid Tate ring from a integral perfectoid ring
as in the following proposition.

Proposition 2.15. Let R be an integral perfectoid ring and π ∈ R be an
element such that R is π-adically complete and πp divides p, then R/Ann(π)
is integral perfectoid, and R[ 1π ] is a perfectoid Tate ring with ring of definition
R/Ann(π).
Similarly, for R integral perfectoid, then R/Ann(p) is integral perfectoid and
R[ 1p ] is a perfectoid Tate ring with ring of definition R/AnnR(p).

Proof. By [7] Lemma 3.9, there are units u, v of R such that both πu and pv has
compatible systems of p-power roots in R. Then by [8] 16.3.69, R/AnnR(πu),
resp. R/AnnR(pv), is integral perfectoid without π-, resp. p-, torsion (the
definition of perfectoid in [8] is the same as being integral perfectoid, as [7]
Remark 3.8 shows). Now R[ 1π ], resp. R[ 1p ], is a perfectoid Tate ring with ring

of definition R/AnnR(πu), resp. R/AnnR(πu), by [7] Lemma 3.21.

Remark 2.16. We have not excluded the zero ring in the proposition. For
example, any perfect ring of characteristic p is integral perfectoid with π = 0,
then the rings produced in the proposition are all zero. This tells us that in
some sense the integral perfectoid rings are more general than being perfectoid
Tate. For example, finite fields are integral perfectoid, but can not be nonzero
(ring of integers of) perfectoid Tate in any way.

We can compute the perfection of the prism (A+
K , (φn([p]q))).

Lemma 2.17. We have

(A+
K)perf ∼= W (O♭

K(ζp∞)∧).

Proof. Let I = (φn([p]q)). By [2] Corollary 2.31, we have

(A+
K)perf ∼= W ((A+

K)perf/p) ∼= W ((colim
φ

A
+
K)∧I /p)

∼= W ((colim
φ

A
+
K/p)∧I )

∼= W ((colim
φ

E
+
K)∧I )

where we use Lemma 10.96.1 (1) of Stacks project, and commutation of colimit
with tensoring with Z/p, in the third equality. From the theory of fields of
norms, we know that

(colim
φ

E
+
K)∧ = O♭

K(ζp∞)∧ ,

where the completion is with respect to the natural valuation. We know that
φn([p]q) ≡ (q − 1)p

n(p−1) mod p is a pseudouniformizer in k[[q − 1]] ⊂ E
+
K ,

hence the completion is the same as completion with respect to I. Then we
have

(A+
K)perf ∼= W (O♭

K(ζp∞ )∧)

as desired.
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Corollary 2.18. The automorphism group of (A+
K , (φn([p]q))) in the category

Spf(OK)∆ is Γ = Gal(K(ζp∞)/K).

Proof. Let γ be an automorphism of (A+
K , (φn([p]q))), then γ by definition is

a δ-ring morphism, and is continuous with respect to (p, φn([p]q))-topology,
hence γ extends to an automorphism of (A+

K , (φn([p]q)))perf. By Theorem 3.10
of [2], the automorphism group of (A+

K , (φn([p]q)))perf as an abstract prism
is the same as the automorphism group of the corresponding integral per-
fectoid ring, which is OK(ζp∞ )∧ by the proposition. The automorphism of

(A+
K , (φn([p]q)))perf as objects of Spf(OK)∆ is then the OK-algebra automor-

phism of OK(ζp∞)∧ , so

γ ∈ Aut(OK(ζp∞ )∧/OK) = Γ.

But we observe that Γ already acts on (A+
K , (φn([p]q))). The action on A

+
K is

clear from its construction, and we need to check that it preserves the ideal
(φn([p]q)).
First,

γ(q) = qα = (1 + q − 1)α =

∞
∑

i=0

(

α

i

)

(q − 1)i

for some α ∈ Z×p , where
(

α
i

)

:= α·(α−1)···(α−i+1)
i! . This follows from the defini-

tion q = [ǫ], and α is the value at γ of the cyclotomic character. Then

γ(φn([p]q)) =
qαp

n+1

− 1

qαpn − 1
=

qp
n

− 1

qαpn − 1
×

qαp
n+1

− 1

qpn+1 − 1
× φn([p]q)

and we claim that qp
n
−1

qαpn−1
× qαpn+1

−1

qpn+1
−1

is a unit, which is what we want to prove.

This follows from the computation

qp
n

− 1

qαpn − 1
= (α +

∞
∑

i=1

(

α

i + 1

)

(qp
n

− 1)i)−1 = α−1 + (q − 1)(· · · )

qαp
n+1

− 1

qpn+1 − 1
= α+

∞
∑

i=1

(

α

i+ 1

)

(qp
n+1

− 1)i = α+ (q − 1)(· · · )

which are units in W (k)[[q − 1]] as α ∈ Z×p .

Now the corollary follows from the fact that A+
K → (A+

K)perf is injective (φ is
injective as A+

K is a δ-subring of the perfect δ-ring W (O♭
C
)).

Moreover, we have the following proposition.

Proposition 2.19. There exists n ∈ N such that

(A+
K , (φn([p]q))) ∈ (OK)∆,

i.e. there exists a map OK → A
+
K/φn([p]q).
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Remark 2.20. A
+
K depends only on K(ζp∞). In other words, A+

K cannot see
the difference between K(ζpk) and K, and this is taken care by the choice of
φn([p]q).

Proof. Let I = ([p]q), we have by Lemma 2.17

(A+
K)perf/I ∼= W (O♭

K(ζp∞ )∧)/I
∼= OK(ζp∞ )∧ ,

where the last isomorphism follows from and φ being an automorphism and
Ker(θ) = (φ−1([p]q)), for θ : W (O♭

K(ζp∞ )∧) ։ OK(ζp∞ )∧ . On the other hand,

we also have

(A+
K)perf/I ∼= (colim

φ
A

+
K)∧(p,I)/I

∼= (colim
φ

A
+
K)∧p /I

∼= (colim
φ

A
+
K/φi(I))∧p

by definition of (A+
K)perf, hence

(colim
φ

A
+
K/φi(I))∧p

∼= OK(ζp∞ )∧ ,

and we claim that this implies that

colim
φ

A
+
K/φi(I) ∼= OK(ζp∞ ). (1)

Observe that A
+
K/φi(I) is integral over W (k), so colim

φ
A

+
K/φi(I) is also in-

tegral over W (k). Since there is no non-trivial integral extension of OK(ζp∞ )

in its completion OK(ζp∞)∧ , colim
φ

A
+
K/φi(I), being integral over a subring of

OK(ζp∞ ), has to be contained in OK(ζp∞). We look at the short exact sequence

of (colim
φ

A
+
K/φi(I))-modules

0 −→ colim
φ

A
+
K/φi(I) −→ OK(ζp∞ ) −→ OK(ζp∞ )/colim

φ
A

+
K/φi(I) =: M −→ 0

From
(colim

φ
A

+
K/φi(I))∧p

∼= OK(ζp∞ )∧

and Stacks project Lemma 10.96.1, we have M∧p = 0. The identification

after completion also implies that colim
φ

A
+
K/φi(I) and OK(ζp∞) have the

same fraction field, in other words, M is p-torsion. Further, we observe that
colim

φ
A

+
K/φi(I) contains

colim
φ

W (k)[[q − 1]]/φi([p]q) ∼= W (k)[ζp∞ ]

over which OK(ζp∞) is finite. This implies that M is a finitely generated

(colim
φ

A
+
K/φi(I))-module, which, together with being p-torsion, tells us thatM
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is killed by pk for some k, so M is p-adically complete. Then we have
M = M∧p = 0, proving the claim.

Next, we show that the transition map φ : A+
K/φi(I) → A

+
K/φi+1(I) is injec-

tive. It is flat as it is base change of φ : A+
K → A

+
K , which is flat by Lemma 2.8.

The claim follows once we have shown that A
+
K/φi(I) is an integral domain

(flat maps preserves regular elements, so kernel consists of zero divisors, which
can only be 0 in an integral domain). Let J = φi([p]q)A

+
K , we have by definition

A
+
K ⊂ W (O♭

C
), and we know that W (O♭

C
)/JW (O♭

C
) ∼= OC which is an inte-

gral domain. Thus JW (O♭
C
) is a prime ideal in W (O♭

C
), so JW (O♭

C
) ∩ A

+
K

is a prime ideal in A
+
K , and it remains to prove JW (O♭

C
) ∩ A

+
K = J .

Let x ∈ JW (O♭
C
) ∩ A

+
K , so x = φi([p]q)y for some y ∈ W (O♭

C
). Then

y = x
φi([p]q)

∈ AK ∩W (O♭
C
), which is A

+
K by definition, proving x ∈ J . Note

that φi([p]q) is a unit in AK since φi([p]q) ≡ (q − 1)p
i(p−1) mod p is a unit in

AK/p = EK .

Now as OK ⊂ OK(ζp∞ ) is finite over W (k), (1) together with injectiveness of

the transition maps imply that OK ⊂ A
+
K/φn([p]q) for some n.

Remark 2.21. We have used freely in the above proof the fact that there is
no algebraic extension of nonarchimedean fields in their completion. More pre-
cisely, let L be an algebraic extension of W (k)[ 1p ], then there is no nontrivial

algebraic extension in its completion L∧. Equivalently, completion induces an
equivalence between algebraic extensions M/L of L and algebraic extension
M∧/L∧ of L∧. This follows immediately from the fact that CGal(L̄/M) = M∧,
where C is a completed algebraic closure of L.

3 Prismatic F-crystals

We recall the definition of prismatic F-crystals and make explicit an example
that is relevant for us. Recall that we have a natural structure sheaf of δ-rings
O∆ on X∆, together with an ideal sheaf I∆.

Definition 3.1. Let X be a p-adic formal scheme, and R be O
∆
[ 1
I
∆
]∧p , the

p-adic completion of the structure sheaf O∆ with (locally) a generator of I∆
inverted. A prismatic F -crystal on X in R-modules is a finite locally free
R-module M over X∆ such that

M(A, I)⊗R(A,I) R(B, IB) ∼= M(B, IB)

for any arrow (A, I) → (B, IB) in X∆, together with an isomorphism

F : φ∗M[
1

I∆
] ∼= M[

1

I∆
]

of R-modules.
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A concrete way to work with prismatic F-crystals in O∆[
1
I∆
]∧p -modules is to

choose a cover (A, I) of the final object ∗ of the toposX∆, suppose that (A, I)×∗
(A, I) is representable, and

(B, J) := (A, I)×∗ (A, I),

then a prismatic F-crystal in O∆[
1
I
∆
]∧p -modules is a finite projective ϕ-A[ 1I ]

∧
p -

module M together with an isomorphism

β : M ⊗A[ 1I ]
∧

p
B[

1

J
]∧p

∼= B[
1

J
]∧p ⊗A[ 1I ]

∧

p
M

of ϕ-B[ 1J ]
∧
p -modules satisfying cocycle conditions. Indeed, it is obvious that

we can obtain such an object from a prismatic F -crystal. Conversely, if we
are given such data, we can build a prismatic F -crystal M as follows. Given
a prism (C,K) ∈ X∆, since (A, I) covers the final object, there exists a cover
(C′,K ′) of (C,K), which also lies over (A, I). Then we can define

M(C,K) := Eq(M ⊗A[ 1I ]
∧

p
C′[

1

K ′
]∧p ⇒ M ⊗A[ 1I ]

∧

p
C′′[

1

K ′′
]∧p )

where (C′′,K ′′) := (C′,K ′)×(C,K)(C
′,K ′), which lives over (B, J), and the two

arrows comes from the base change descent data β ⊗B[ 1J ]∧p
C′′[ 1

K′′ ]
∧
p . Now by

the next proposition, the descent data is effective on finite projective modules,
so M(C,K) is a finite projective module over C[ 1

K ]∧p .

Proposition 3.2. Let (A, I) → (B, IB) be a cover in the category of bounded
prisms, and (B•, IB•) be the corresponding Čech nerve, then we have an equiv-
alence of categories

Vect(A[
1

I
]∧p )

∼
→ lim
←

(V ect(B[
1

I
]∧p ) ⇒ V ect(B2[

1

I
]∧p )−→−→
−→

· · · ),

where Vect(R) denotes the category of finite projective modules over the ring R.

Proof. Since A[ 1I ]
∧
p (resp. B•[ 1I ]

∧
p ) is p-complete, by [9] tag 0D4B,

V ect(A[ 1I ]
∧
p ) (resp. V ect(B•[ 1I ]

∧
p )) is equivalent to lim

n
V ect(A[ 1I ]/p

n) (resp.

lim
n

V ect(B•[ 1I ]/p
n)). Thus it suffices to prove the equivalence

Vect(A/pn[
1

I
])
∼
→ lim
←

(V ect(B/pn[
1

I
]) ⇒ V ect(B2/pn[

1

I
])
−→
−→
−→

· · · ). (2)

We know from the proof of [2] Corollary 3.12 that B2 is the derived (p, I)-
completion of B⊗L

AB, which is proved in loc. cit. to be discrete and classically
(p, I)-complete. Then Lemma 3.3 shows that

B2 = (B ⊗A B)∧(p,I),
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i.e. it is the classical (p, I)-completion of B⊗AB, and similarly for B•. Indeed,

by the discreteness and classical (p, I)-completeness of B̂ ⊗L

A B, the derived
(p, I)-completion of B ⊗L

A B, we have

B2 = H0(B̂ ⊗L

A B) = H0(B̂ ⊗L

A B)∧(p,I) = H0(B ⊗L

A B)∧(p,I) = (B ⊗A B)∧(p,I),

where the third equality follows from Lemma 3.3. Then we have

B2/pn = (B/pn ⊗A/pn B/pn)∧I

B3/pn = (B/pn ⊗A/pn B/pn ⊗A/pn B/pn)∧I

and similarly for B•/pn. Since A → B is assumed to be (p, I)-completely
faithfully flat, A/pn → B/pn is I-completely faithfully flat, and (2) follows
from [10] Theorem 7.8.

Lemma 3.3. Let R be a ring and I be a finitely generated ideal of R. Let K ∈
D≤0(R) be a complex of R-modules with zero cohomology in positive degrees,
and K̂ its derived I-completion, then we have a canonical identification

H0(K̂)∧I
∼= H0(K)∧I ,

in other words, the classical I-completion of H0(K̂) is the same as the classical
I-completion of H0(K).

Proof. For any R-module M , we denote M̂ its derived I-completion by view-
ing M as a complex concentrated in zero degree. Recall that there is a natural
map M → H0(M̂) which is initial among maps M → N with N a derived
I-complete R-module, see [10] Definition 2.27 for example. By the spectral
sequence in [9] tag 0BKE, we have

H0(K̂) = H0(Ĥ0(K)),

so we see that
H0(K) → H0(K̂)

is the initial map among H0(K) → N with N a derived I-complete R-module.
We now claim that the composite map

H0(K) → H0(K̂) → H0(K̂)∧I

is initial among H0(K) → N ′ where N ′ is classical I-complete. This is ex-
actly the universal property of the classical I-completion of H0(K), whence
H0(K̂)∧I = H0(K)∧I .
We now prove the claim. Let H0(K) → N ′ where N ′ be as given, since classical
I-completeness implies derived I-completeness ([9] tag 091T), we have a unique
factorization

H0(K) → H0(K̂) → N ′,
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which further factors as

H0(K) → H0(K̂) → H0(K̂)∧I → N ′

by the universal property of H0(K̂)∧I .

Example 3.4. Let k be a perfect field of characteristic p, K be a finite totally
ramified extension of W (k)[ 1p ], and X = Spf(OK). Let n ∈ N be chosen as in
Proposition 2.19 such that

(A+
K , (φn([p]q))) ∈ X∆,

then it is a cover of the final object by the following Lemma 3.5. Moreover, we
have by Lemma 3.6

(A+
K , (φn([p]q)))×∗ (A

+
K , (φn([p]q))) = (C, J),

where C is (p, φn([p]q)⊗1)-completion of A+
K⊗̂W (k)A

+
K{ ω⊗1−1⊗ω

φn([p]q)⊗1
,
1⊗φn([p]q)
φn([p]q)⊗1

},

which is freely adjoining ω⊗1−1⊗ω
φn([p]q)⊗1

and
1⊗φn([p]q)
φn([p]q)⊗1

to A
+
K⊗̂W (k)A

+
K as δ-rings,

and J = (φn([p]q)⊗ 1).
Thus a prismatic F-crystal in O∆[

1
I∆
]∧p -modules over X is a AK-module M

together with an isomorphism

M ⊗AK C[
1

J
]∧p

∼= C[
1

J
]∧p ⊗AK M

satisfying cocycle conditions. The ring C is difficult to understand explicitly,
we will see below how we can bypass this difficulty by passing to perfections.

Lemma 3.5. Let K be a finite totally ramified extension of W (k)[ 1p ], X =

Spf(OK), and n ∈ N be chosen as in Proposition 2.19 such that

(A+
K , (φn([p]q))) ∈ X∆,

then it covers the final object in X∆.

Proof. Let (A, I) be an object of X∆, then A/I is a OK-algebra. We have a
quasisyntomic cover OK [ζp∞ ]∧p of OK , hence

A/I⊗̂OKOK [ζp∞ ]∧p

is a quasisyntomic cover of A/I. By [2] Proposition 7.11, we can find a prism
(C, J) that covers (A, I) such that there is a morphism

A/I⊗̂OKOK [ζp∞ ]∧p → C/J.

Now as OK [ζp∞ ]∧p is integral perfectoid, the composition

OK [ζp∞ ]∧p → A/I⊗̂OKOK [ζp∞ ]∧p → C/J
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lifts to a map of prisms

(Ainf(OK [ζp∞ ]∧p ),Ker(θ)) → (C, J)

by [2] Lemma 4.7. We have that

(A+
K , (φn([p]q)))perf = (Ainf(OK [ζp∞ ]∧p ), φ

n+1(Ker(θ)))

by Lemma 2.17, so we have a map

(A+
K , (φn([p]q))) → (Ainf(OK [ζp∞ ]∧p ), φ

n+1(Ker(θ)))

φ−n−1

−→ (Ainf(OK [ζp∞ ]∧p ),Ker(θ)) → (C, J)

of prisms. As (C, J) covers (A, I), we have finished the proof.

Lemma 3.6. Let k be a perfect field of characteristic p, K be a finite totally ram-
ified extension of W (k)[ 1p ], and ω ∈ A

+
K be an element which modulo φn([p]q)

becomes a uniformizer of OK under the inclusion OK ⊂ A
+
K/φn([p]q). Then

as objects of Spf(OK)∆, we have

(A+
K , (φn([p]q)))×∗ (A

+
K , (φn([p]q))) = (C, J),

where

(C, J) := (A+
K⊗̂W (k)A

+
K{

ω ⊗ 1− 1⊗ ω

φn([p]q)⊗ 1
,
1⊗ φn([p]q)

φn([p]q)⊗ 1
}∧, (φn([p]q)⊗ 1)).

The ring displayed is (p, φn([p]q)⊗ 1)-completion of

A
+
K⊗̂W (k)A

+
K{

ω ⊗ 1− 1⊗ ω

φn([p]q)⊗ 1
,
1⊗ φn([p]q)

φn([p]q)⊗ 1
},

which is freely adjoining ω⊗1−1⊗ω
φn([p]q)⊗1

and
1⊗φn([p]q)
φn([p]q)⊗1

to A
+
K⊗̂W (k)A

+
K as δ-rings.

Proof. By definition, an object of X∆ is a prism (A, I) equipped with a mor-
phism OK → A/I. The OK-algebra structure does not necessarily lift to A,
but the corresponding W (k)-algebra structure does. Indeed, by deformation
theory of perfect rings, W (k) ⊂ OK → A/I lifts canonically to a morphism
W (k) → A, hence objects of X∆ are naturally equipped with W (k)-algebra
structures, and all arrows in X

∆
are W (k)-algebra morphisms.

Now given such an (A, I), together with two arrows (A+
K , (φn([p]q))) → (A, I)

in X∆, they give rise canonically to a δ-ring morphism

f : A+
K⊗̂W (k)A

+
K −→ A.

We know from properties of prisms that I = (f(φn([p]q) ⊗ 1)) = (f(1 ⊗
φn([p]q))). Moreover, being arrows in X∆, the two arrows are OK-algebra mor-
phisms mod φn([p]q), which means that f maps 1⊗ω−ω⊗ 1 mod φn([p]q)⊗ 1

to 0 in A/I. Thus f factors through A
+
K⊗̂W (k)A

+
K{ ω⊗1−1⊗ω

φn([p]q)⊗1
,
1⊗φn([p]q)
φn([p]q)⊗1

}∧.
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It remains to show that (C, J) is a prism. First we observe that
1⊗φn([p]q)
φn([p]q)⊗1

is

a unit in C, whence (1 ⊗ φn([p]q)) = (φn([p]q) ⊗ 1). This follows from the
equation

1⊗ φn([p]q) = φn([p]q)⊗ 1 ·
1⊗ φn([p]q)

φn([p]q)⊗ 1

and [2] Lemma 2.24.
We now claim that {1 ⊗ φn([p]q), ω ⊗ 1 − 1 ⊗ ω} is a regular sequence of
A

+
K⊗̂W (k)A

+
K . Viewing A

+
K⊗̂W (k)A

+
K as a A

+
K-algebra along the first fac-

tor, then it follows from [2] Proposition 3.13 that (C, J) is a prism. It remains
to prove the claim, which puts us into the setting of [2] Proposition 3.13.
Observe that 1 ⊗ φn([p]q) is regular since φn([p]q) is regular in A

+
K (being an

integral domain), and A
+
K⊗̂W (k)A

+
K is flat over A

+
K . We want to show that

ω ⊗ 1− 1⊗ ω is regular in

A
+
K⊗̂W (k)A

+
K/1⊗ φn([p]q) ∼= A

+
K⊗̂W (k)(A

+
K/φn([p]q)).

We note that

ω ⊗ 1− 1⊗ ω ∈ A
+
K⊗̂W (k)OK ⊂ A

+
K⊗̂W (k)(A

+
K/φn([p]q))

by definition of ω. By our assumption on k, OK is totally ramified over W (k),
so OK

∼= W (k)[x]/E for an Eisenstein polynomial E ∈ W (k)[x]. Then

A
+
K⊗̂W (k)OK

∼= A
+
K [x]/E,

and by Eisenstein criterion, E is irreducible in A
+
K [x]. Note that A

+
K is a

regular local ring, whence a UFD by Auslander–Buchsbaum theorem. Then
Gauss’s lemma tells us A+

K [x] is a UFD as well, so irreducible polynomials are
prime. Then A

+
K [x]/E is an integral domain, and ω ⊗ 1 − 1 ⊗ ω is regular in

A
+
K⊗̂W (k)OK . We have seen in the proof of Proposition 2.19 that A+

K/φn([p]q)

is an integral domain, so OK ⊂ A
+
K/φn([p]q) is flat, from which it follows that

ω ⊗ 1− 1⊗ ω is regular in A
+
K⊗̂W (k)(A

+
K/φn([p]q)).

4 étale ϕ-modules

In this section, we prove that étale ϕ-modules on prisms does not change by
passing to perfections. We first recall the definition of étale ϕ-modules.

Definition 4.1. Let R be a ring equipped with a ring morphism ϕ : R → R,
an étale ϕ-modules over R is a finite projective R-module M equipped with an
R-module isomorphism

F : ϕ∗M = M ⊗R,ϕ R
∼
−→ M.

The morphisms between étale ϕ-modules are R-module morphisms preserv-
ing F . We denote by ÉM/R the category of étale ϕ-modules over R.
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First, we observe that by passing to naive perfections, the category does not
change.

Proposition 4.2. There is an equivalence of categories

ÉM/R
∼
−→ ÉM/colim

ϕ
R

induced by base changing to colim
ϕ

R.

Proof. For notational convenience, we index the rings R in the relevant system
by Rn, i.e. the ring colim

ϕ
R is the colimit of the cofiltered system

R0
ϕ

−→ R1
ϕ

−→ R2
ϕ

−→ · · ·

with each Ri = R. As the data of an étale ϕ-module is finite in nature, an étale
ϕ-module over colim

ϕ
R comes via base change from an étale ϕ-module over Rn

for some n. We need to show that it has further descent to R0. Now let M be
an étale ϕ-module over Rn. Since Rn = R = R0, we can view M as an étale
ϕ-module over R0, and we claim that M⊗Ro Rn = (ϕn)∗M is isomorphic to M
as étale ϕ-modules over Rn. Iterate the ϕ-module structure F : ϕ∗M ∼= M , we
obtain an R-module isomorphism

G := F ◦ ϕ∗F ◦ · · · ◦ (ϕn−1)∗F : (ϕn)∗M
∼
−→ M

we need to check that this is an étale ϕ-module isomorphism, i.e. G◦(ϕn)∗F =
F ◦ ϕ∗G, but this is clear. This proves essential surjectivity.
For fully faithfullness, we need to show that for (M,FM ), (N,FN ) ∈ ÉM/R0

,

an arrow M ⊗R0 colim
ϕ

R → N ⊗R0 colim
ϕ

R in ÉM/colim
ϕ

R comes uniquely

from an arrow in ÉM/R0
via base change. The arrow comes from an arrow

in ÉM/Rn
for some n by standard finiteness argument, and we are reduced to

showing that any arrow

f : M ⊗R0 Rn −→ N ⊗R0 Rn

in ÉM/Rn
has a unique descent to R0. We show that it descends uniquely to

Rn−1, which proves the claim by iteration. Now we can assume n = 1, the
previous paragraph shows that

FM : ϕ∗M
∼
−→ M

FN : ϕ∗N
∼
−→ N

are isomorphisms as étale ϕ-modules overR (being denoted byG in the previous
paragraph). Let

g := FN ◦ f ◦ F−1M : M −→ N
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then g is an arrow in ÉM/R0
, and we claim that ϕ∗g = f . Since f is an arrow

in ÉM/R1
, we have

ϕ∗FN ◦ ϕ∗f = f ◦ ϕ∗FM

and then

ϕ∗g = ϕ∗FN ◦ ϕ∗f ◦ ϕ∗F−1M = f ◦ ϕ∗FM ◦ ϕ∗F−1M = f,

proving the existence of the descent. It is unique since any descent h of f
satisfies the relation ϕ∗h = f by definition, and h satisfies the relation h◦FM =
FN ◦ ϕ∗h as it is in ÉM/R0

, combining the two we have

h ◦ FM = FN ◦ ϕ∗h = FN ◦ f

proving
h = FN ◦ f ◦ F−1M = g.

Next we show that p-adic completion of the perfection does not lose information
of étale ϕ-modules over p-complete rings.

Lemma 4.3. Let R be a p-adically complete ring equipped with a ring morphism
ϕ : R −→ R, then base change induces an equivalence of categories

ÉM/R
∼
−→ ÉM/(colim

ϕ
R)∧p

.

Proof. By p-completeness of (colim
ϕ

R)∧p , we have

ÉM/(colim
ϕ

R)∧p
= lim

n
ÉM/(colim

ϕ
R)∧p /pn = lim

n
ÉM/(colim

ϕ
R)/pn =

lim
n

ÉM/colim
ϕ

(R/pn) = lim
n

ÉM/(R/pn) = ÉM/R

where we use the commutativity of colimit with tensoring with Z/pn in the
third equality, Proposition 4.2 in the fourth equality and p-completeness in the
last one.

We now specialize to the case of prisms and closely related rings. Let (A, I) be
a bounded prism, we want to study étale ϕ-modules over A[ 1I ]

∧
p . There are two

natural ways to form a perfection of the ring. The first is take the perfection
directly and then p-complete it, namely

(colim
φ

A[
1

I
]∧p )
∧
p ,

while the second is to take the perfection of the prism (A, I) first, then invert-
ing I and p-complete, i.e.

((colim
φ

A)∧(p,I)[
1

I
])∧p .
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It is the second one that will ultimately help us, and we want to under-
stand étale ϕ-modules over it. Note that we have already understand étale
ϕ-modules over the first ring, namely Lemma 4.3 tells us that étale ϕ-modules
over (colim

φ
A[ 1I ]

∧
p )
∧
p is the same as étale ϕ-modules over A[ 1I ]

∧
p . Observe that

we have a natural morphism

(colim
φ

A[
1

I
]∧p )
∧
p −→ ((colim

φ
A)∧(p,I)[

1

I
])∧p

and we have the following theorem characterizing étale ϕ-modules over
((colim

φ
A)∧(p,I)[

1
I ])
∧
p .

Theorem 4.4. Let (A, I) be a bounded prism such that φ(I) mod p is generated
by a non-zero divisor in A/p, then we have an equivalence of categories

ÉM/(colim
φ

A[ 1I ]
∧

p )∧p

∼
−→ ÉM/((colim

φ
A)∧

(p,I)
[ 1I ])

∧

p

induced by base change.

Proof. We compute (colim
φ

A[ 1I ]
∧
p )
∧
p first. Being a p-complete perfect δ-ring, we

know from [2] Corollary 2.31 that

(colim
φ

A[
1

I
]∧p )
∧
p = W ((colim

φ
A[

1

I
]∧p )
∧
p /p) =

W ((colim
φ

A[
1

I
]∧p )/p) = W (colim

φ
(A[

1

I
]∧p /p)) = W (colim

φ
(A/p[

1

I
]))

where we use again the commutation of colimit with tensoring with Z/p. A
is (p, I)-complete as (A, I) is a bounded prism, so A/p is I-adically complete.
By [2] Lemma 3.6, φ(I)A is principal, so φ(I) ≡ Ip mod p is principal which
is generated by a non-zero divisor by assumption. It follows that A/p[ 1I ] is a
Tate ring with ring of definition A/p.
On the other hand,

((colim
φ

A)∧(p,I)[
1

I
])∧p = W ((colim

φ
A)∧(p,I)/p[

1

I
]) = W ((colim

φ
A/p)∧I [

1

I
])

by [2] Corollary 2.31 again.
We know that étale ϕ-modules over W (R) are equivalent to lisse sheaves on R
for a perfect ring R by [11] Proposition 3.2.7, hence it is enough to compare
the finite étale sites of (colim

φ
A/p)∧I [

1
I ] and colim

φ
(A/p[ 1I ]).

We note that (colim
φ

A/p)∧I [
1
I ] is the completed perfection of the Tate ring

A/p[ 1I ], and by the following lemma the finite étale site of (colim
φ

A/p)∧I [
1
I ] is the

same as that of A/p[ 1I ]. But perfection also does not change finite étale site (see
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[11] Theorem 3.1.15(a)), hence finite étale site of colim
φ

(A/p[ 1I ]) is also identified

with A/p[ 1I ]. This proves that the finite étale sites of (colim
φ

A/p)∧I [
1
I ] and

colim
φ

(A/p[ 1I ]) are equivalent via base change (as all intermediate equivalences

here are through base change).

Lemma 4.5. Let R be a Banach ring of characteristic p (in the sense of [11]
Definition 2.2.1), then the finite étale site of (colim

φ
R)∧ is equivalent to that

of R via base change.

Proof. Let Ru be the uniformization of R as defined in [11] Definition 2.8.13,
then by [11] Proposition 2.8.16, the finite étale site of Ru is equivalent to that
of R under base change. Moreover, by [11] Theorem 3.1.15 (b), the finite
étale sites of (colim

φ
Ru)∧ and Ru are equivalent, so we have the comparison

between finite étale sites of R and (colim
φ

Ru)∧. We claim that (colim
φ

Ru)∧ =

(colim
φ

R)∧. By [11] Lemma 2.6.2, there exists an affionid system Ri (see

[11] Definition 2.6.1 for definition) such that R = (colim Ri)
∧, then Ru =

(colim Rred
i )∧ by [11] Corollary 2.5.6. Let Rperf := colim

φ
R, then

(Rperf)
∧ = ((colim Ri)perf)

∧ = (colim (Ri)perf)
∧

= (colim (Rred
i )perf)

∧ = (Ru
perf)

∧

where we use that T red
perf = Tperf for any ring T of characteristic p, which can be

checked directly.

Combining all the equivalences we have established, we have the following
theorem.

Theorem 4.6. With assumptions as in Theorem 4.4, we have an equivalence
of categories

ÉM/A[ 1I ]
∧

p

∼
−→ ÉM/((colim

φ
A)∧

(p,I)
[ 1I ])

∧

p

induced by base change.

5 (ϕ,Γ)-modules and prismatic F -crystals

In this section, we interpret (ϕ,Γ)-modules in terms of prismatic F -crystals.
We recover the equivalence between Galois representations and (ϕ,Γ)-modules
using the new interpretation.
Let us first recall the definition of (ϕ,Γ)-modules. Let K be a finite totally
ramified extension of W (k)[ 1p ], and A

+
K be as in Section 2. Recall that AK ⊂

W (C♭) is stable by the canonical Frobenius lifting φ and the action of the Galois
group Gal(K̄/K) on W (O♭

C
). Moreover, the action factorizes through

Γ := Gal(K(ζp∞)/K).
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Definition 5.1. A (ϕ,Γ)-module over AK is an étale ϕ-module M over AK

(with respect to the φ-structure on AK), i.e. a finite projective AK-module M
equipped with an isomorphism

F : φ∗M ∼= M,

together with an action of Γ on M that commutes with F , and semilinear with
respect to the action of Γ on AK .

We have the following theorem.

Theorem 5.2. The category of prismatic F-crystals in O∆[
1
I
∆
]∧p -modules over

Spf(OK) is equivalent to the category of (ϕ,Γ)-modules over AK .

Proof. By Example 3.4, we see that a prismatic F-crystal in O∆[
1
I∆
]∧p -modules

over Spf(OK) is an étale ϕ-module over AK together with an isomorphism

M ⊗AK C[
1

J
]∧p

∼= C[
1

J
]∧p ⊗AK M

of étale ϕ-modules over C[ 1J ]
∧
p satisfying cocycle conditions, with

(C, J) = (A+
K⊗̂W (k)A

+
K{

ω ⊗ 1− 1⊗ ω

φn([p]q)⊗ 1
,
1⊗ φn([p]q)

φn([p]q)⊗ 1
}∧, (φn([p]q)⊗ 1))

as in Example 3.4. Then Theorem 4.6 implies that this is equivalent (via base
change) to an étale ϕ-module M over

(A+
K)perf[

1

J
]∧p

∼= Ainf(OK(ζp∞ )∧p
)[
1

J
]∧p

∼= W ((K(ζp∞)∧p )
♭)

together with an isomorphism

M⊗W ((K(ζp∞)∧p )♭) B[
1

I
]∧p

∼= B[
1

I
]∧p ⊗W ((K(ζp∞ )∧p )♭) M

as étale ϕ-modules over B[ 1I ]
∧
p , where (B, I) = (C, J)perf. Then the lemma

below tells us that the descent data is equivalent to an action of Γ on M that
is semilinear with respect to the action of Γ on W ((K(ζp∞)∧p )

♭). As the action
of Γ is already defined on AK , Theorem 4.6 tells us that this is equivalent to
an action of Γ on M that is semilinear with respect to the action of Γ on AK ,
which is exactly a (ϕ,Γ)-module over AK .

Lemma 5.3. Let (B, I) be the perfection of the prism (C, J) in Lemma 3.6,
then

B[
1

I
]∧p

∼= C0(Γ,W ((K(ζp∞)∧p )
♭))

where C0(Γ,W ((K(ζp∞)∧p )
♭)) is the ring of continuous functions on Γ

with values in W ((K(ζp∞)∧p )
♭). Moreover, the two structure maps from

W ((K(ζp∞)∧p )
♭) to C0(Γ,W ((K(ζp∞)∧p )

♭)) are the obvious constant function

map, and the one sending x ∈ W ((K(ζp∞)∧p )
♭) to {γ → γ(x)}.
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Proof. Let

(F, F+) := (K(ζp∞)∧p ,OK(ζp∞ )∧p
).

By Lemma 3.6, (B, I) is the initial perfect prism in Spf(OK)∆ equipped with
two arrows from (A+

K , (φn([p]q))) into it. This is the same as the initial perfect
prism in Spf(OK)∆ with two arrows from

(A+
K , (φn([p]q)))perf = (Ainf(F

+),Ker(θ)),

where we use Lemma 2.17. Since perfect prisms are equivalent to integral
perfectoid rings, we see that B/I is the initial integral perfectoid OK-algebra
with two maps (as OK-algebras) from F+. We claim that B/I[ 1p ] is the initial
perfectoid Tate K-algebra with two maps from F . This follows immediately
form Proposition 2.15 and Proposition 2.14.
Now for any perfectoid Tate K-algebraA with two maps from F , we obtain two
maps from Spa(A,A◦) to Spa(F, F+), as perfectoid spaces over Spa(K,OK) .
We view them as diamonds over Spd(K,OK). Since diamonds is determined by
their values on (affinoid) perfectoid test objects, the previous paragraph shows
that

Spa(B/I[
1

p
], B/I[

1

p
]+)⋄ = Spa(F, F+)⋄ ×Spd(K,OK) Spa(F, F

+)⋄

for some ring of definition B/I[ 1p ]
+, which can be identified as the image of

B/I in B/I[ 1p ], providing we know the right hand side is affinoid perfectoid.
But it is well-known that

Spd(K,OK) = Spa(F, F+)⋄/Γ,

see [5] Lemma 10.1.7 for example, so

Spa(F, F+)⋄ ×Spd(K,OK) Spa(F, F
+)⋄ ∼= Spa(F, F+)⋄ × Γ

∼= Spa(C0(Γ, F ), C0(Γ, F+))⋄

where C0(Γ, F ), resp. C0(Γ, F+), is the ring of continuous functions on Γ with
values in F , resp. F+, see [4] Example 11.12 for the last isomorphism. We
then have

B/I[
1

p
] ∼= C0(Γ, F ).

as the functor from perfectoid spaces over Spa(K,OK) to diamonds over
Spd(K,OK) is fully faithful. The two structure maps from F to C0(Γ, F )
is then the constant function map, and the one sending x ∈ F to {γ → γ(x)},
which is easy to see by chasing through the above canonical isomorphisms.
Now

B[
1

I
]∧p = W ((B/I)♭[

1

ω
]) = W ((B/I[

1

p
])♭)
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for a uniformizer ̟ = (a0, a1, · · · ) ∈ (B/I)♭ which we can choose so that a0
divides p in B/I. Thus

B[
1

I
]∧p

∼= W (C0(Γ, F )♭) ∼= W (C0(Γ, F ♭)) ∼= C0(Γ,W (F ♭))

where the second isomorphism follows directly from the description F ♭ =
limx→xp F , and the same descrition for C0(Γ, F )♭. The last isomorphism fol-
lows from the concrete description of the Witt vector, namely W (F ♭) = (F ♭)N.
This clearly commutes with taking continuous functions. Moreover, the ring
structure is defined by polynomial equations that is independent of the input
ring, whence the last isomorphism. The description of the two structure maps
is straightforward by chasing through the various canonical isomorphisms.

Remark 5.4. The action of Γ can be directly detected as follows. For
a prismatic F-crystal M over OK , and γ ∈ Γ. The action of γ on
M((A+

K , (φn([p]q)))) is induced by the base change isomorphism (the crystal
structure)

M((A+
K , (φn([p]q))))⊗AK ,γ AK

∼= M((A+
K , (φn([p]q))))

corresponding to the arrow

γ : (A+
K , (φn([p]q)))

∼
−→ (A+

K , (φn([p]q)))

in (OK)∆ as described in the proof of Corollary 2.18.

Remark 5.5. The proof also shows that prismatic F -crystals in O∆[
1
I∆
]∧p -

modules over Spf(OK) are equivalent to F -crystals in O∆[
1
I
∆
]∧p -modules over

Spf(OK)perf
∆

, i.e. the site of perfect prisms over Spf(OK), and the equiva-
lence is induced by the obvious restriction functor. Indeed, prismatic F -crystals
in O∆[

1
I
∆
]∧p -modules over Spf(OK) (resp. Spf(OK)perf

∆
) are equivalent to ϕ-

modules over A
+
K [ 1I ]

∧
p together with descent data over C[ 1I ]

∧
p (resp. ϕ-modules

over (A+
K)perf [

1
I ]
∧
p together with descent data over Cperf [

1
I ]
∧
p ), and the proof

shows that the latter objects are equivalent.

With exactly the same idea, we can recover Galois representations from pris-
matic F-crystals in O∆[

1
I
∆
]∧p -modules. As it is along the same reasoning as

above, we only sketch the argument.

Theorem 5.6. The category of prismatic F-crystals in O∆[
1
I∆
]∧p -modules

over Spf(OK) is equivalent to the category of finite free continuous Zp-
representations of G := Gal(K/K).

Proof. Let C := K̂ and OC be the ring of integers of it. By Remark 5.5,
it enough to work in Spf(OK)perf

∆
. We can evaluate a prismatic F-crystal at

(Ainf(OC),Ker(θ)). Let (B, J) be the product

(Ainf(OC),Ker(θ))× (Ainf(OC),Ker(θ))
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in Spf(OK)perf
∆

, and we need to compute

B[
1

J
]∧p = W ((B/J [

1

p
])♭).

We know that B/J [ 1p ] is a perfectoid Tate K-algebra and can be interpreted
as

Spa(B/J [
1

p
], B/J [

1

p
]+)⋄ = Spd(C,OC)×Spd(K,OK) Spd(C,OC).

We know that

Spd(C,OC)×Spd(K,OK) Spd(C,OC) ∼= Spd(C,OC)×G

= Spd(C0(G,C), C0(G,OC)),

so

B[
1

J
]∧p

∼= C0(G,W (C♭)).

With the help of Theorem 4.6, this proves that a prismatic F-crystal is the
same as an étale ϕ-module over W (C♭) together with a G-action which is
semilinear with respect to the action of G on W (C♭). Now as C♭ is algebraically
closed, it is well-known that the category of étale ϕ-modules over W (C♭) is
equivalent to the category of finite free Zp-modules via taking F -invariants, see
[11] Proposition 3.2.7 for example. This shows that the prismatic F-crystals
are equivalent to finite free Zp-representations of G.

Remark 5.7. Similarly as before, for a prismatic F-crystal M , the G-action on
M((Ainf(OC),Ker(θ))) is induced by the base change isomorphism (the crystal
structure)

M((Ainf(OC),Ker(θ))) ⊗W (C♭),g W (C♭) ∼= M((Ainf(OC),Ker(θ)))

with respect to the arrow

g : (Ainf(OC),Ker(θ))
∼
−→ (Ainf(OC),Ker(θ))

in (OK)∆.

Corollary 5.8. The category of (ϕ,Γ)-modules over AK is equivalent to the
category of finite free Zp-representations of G = Gal(K/K). The equivalence
functors are

M 7→ (M⊗AK W (C♭))F⊗φ=1

T 7→ (T ⊗Zp W (C♭))H=1 deperfection
7→ (·)

where M is a (ϕ,Γ)-module over AK , T is a finite free Zp-representation of G,
and

H := Gal(K/K(ζp∞)) ⊂ G.

Documenta Mathematica 26 (2021) 1771–1798



(ϕ,Γ)-Modules and Prismatic F-Crystals 1795

The action of G is diagonal on both T ⊗Zp W (C♭) and M⊗AK W (C♭), where G
acts on M through the canonical quotient G → Γ. The ϕ-structure on T ⊗Zp

W (C♭) is defined by φ on the second factor. Moreover, the deperfection functor
is the equivalence from the category of (ϕ,Γ)-modules over W (K(ζp∞)♭) to the
category of (ϕ,Γ)-modules over AK , as induced from Theorem 4.6.

Proof. Both categories are equivalent to prismatic F-crystals in O∆[
1
I
∆
]∧p -

modules. We check the equivalence functors are given by the stated ones. Given
a prismatic F-crystal M , the associated (ϕ,Γ)-module is M((A+

K , (φn([p]q)))),
while the associated Galois representation is M((Ainf(OC),Ker(θ)))ϕ=1. M
being a crystal, we have a canonical identification

M((Ainf(OC),Ker(θ))) ∼= M((A+
K , (φn([p]q))))⊗AK W (C♭)⊗W (C♭),φ−n−1W (C♭)

(3)
using the arrow

(A+
K , (φn([p]q))) → (Ainf(OC), (φ

n([p]q)))
φ−n−1

−→ (Ainf(OC),Ker(θ))

in Spf(OK)∆. We have seen in the proof of Proposition 4.2 that the base
change along φn+1 does not affect étale ϕ-modules, namely for any étale ϕ-
module N over A with respect to φ : A → A, there is a canonical identification
N ⊗A,φn+1 A ∼= N of étale ϕ-modules over A. Hence we have a canonical
idenfication

M((Ainf(OC),Ker(θ))) ∼= M((A+
K , (φn([p]q)))) ⊗AK W (C♭) (4)

of étale ϕ-modules overW (C♭). Thus the functor from (ϕ,Γ)-modules to Galois
representations is of the expected form, we still need to identify the Galois
action. This follows easily from Remarks 5.7 and 5.4, as the Galois action on
both sides of (3) are induced by base change, while the identification (3) itself
is also induced by base change. An easy base change computation together
with the observation that the action of G on A

+
K through the inclusion A

+
K →

Ainf(OC) is via the quotient G → Γ proves the compatibility of Galois action
in (3). Then the naturality of the identification N ⊗A,φn+1 A ∼= N gives us the
desired description of Galois action on both sides of (4).
On the other hand, we have a canonical map

(Ainf(OK(ζp∞ )∧p
),Ker(θ)) −→ (Ainf(OC),Ker(θ))/H

in the site (OK)perf
∆

, which is not necessarily an isomorphism, but becomes so on

the structure sheaf O∆[
1
I
∆
]∧p . Indeed, this follows from that C has (continuous)

Galois group H over K(ζ∞p )∧p and the tilting equivalence of perfectoid fields.
This tells us that

M((Ainf(OK(ζp∞)∧p
),Ker(θ))) ∼= M((Ainf(OC),Ker(θ)))H=1.
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Moreover, by looking at the descent data of the F -crystal, the Γ-action on
the right hand side is carried to the descent data of the left hand side. Then
Theorem 4.6 applied to AK gives the other direction. Note that the categorical
equivalence in Theorem 4.6 implies that base change preserves not only the ϕ-
structure, but also Γ-action, thereby inducing an equivalence of (ϕ,Γ)-modules.

Remark 5.9. The fact that twist by φn+1 does not change étale ϕ-modules and
has all the expected functoriality is used secretly throughout the above proof.
For example, it is needed in checking the two functors are quasi-inverse to each
other. All that says is that we can ignore the issue caused by twisting by φ.

The equivalence functors in the above corollary may look different from the
treatment one usually finds in the literature. We now check that they are
equivalent.
Let A be the p-adic completion of the maximal unramified extension of AK

inside W (C♭), i.e. A is the Cohen ring of Esep
K , the separable closure of EK ,

which lies inside W (C♭) and extends AK . It is stable by φ and the action of
the Galois group G. If we can write A as A[ 1I ]

∧
p for some prism (A, I), then

we can repeat the above argument with W (C♭) replaced by A, and deduce
the usual description of equivalence functors between Galois representations
and (ϕ,Γ)-modules. However, this is not possible since E

sep
K is not complete.

Instead, we proceed with the following lemma.

Lemma 5.10. There is an equivalence of categories

ÉM/A
∼
−→ ÉM/W (C♭)

induced by base change.

Proof. By [2] Corollary 2.31,

(colim
φ

A)∧p
∼= W (colim

φ
A/p) ∼= W (colim

φ
E

sep
K ) ∼= W (Ealg

K ),

then Lemma 4.3 implies that

ÉM/A
∼
−→ ÉM/W (Ealg

K ).

As both E
alg
K and C♭ are algebraically closed, étale ϕ-modules overW (Ealg

K ) and
W (C♭) are both equivalent to finite free Zp-modules by taking F -invariants, we
have the equivalence

ÉM/W (Ealg
K )

∼
−→ ÉM/W (C♭).

Combining the two we have the desired equivalence.

Theorem 5.11. The category of (ϕ,Γ)-modules over AK is equivalent to the
category of finite free Zp-representations of G = Gal(K/K). The equivalence
functors are

M 7→ (M⊗AK A)F⊗φ=1
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T 7→ (T ⊗Zp A)H=1

where M is a (ϕ,Γ)-module over AK , T is a finite free Zp-representation of G,
and

H := Gal(K/K(ζp∞)) ⊂ G.

The action of G is diagonal on both T ⊗Zp A and M ⊗AK A, where G acts
on M through the canonical quotient G → Γ. The ϕ-structure on T ⊗Zp A is
defined by φ on the second factor.

Proof. By Lemma 5.10, the functor

M 7→ (M⊗AK W (C♭))F⊗φ=1

in Corollary 5.8 is the same as

M 7→ (M⊗AK A)F⊗φ=1.

Indeed, as étale ϕ-modules over W (C♭) are all isomorphic to the trivial ones
(W (C♭)n, φ), Lemma 5.10 tells us that étale ϕ-modules over A are also of the
form (An, φ), so taking F -invariants produces the same finite free Zp-modules,
namely

(N ⊗A W (C♭))F=1 ∼= NF=1

for any étale ϕ-module N over A. This gives the identification of the Zp-
modules, the identification of Galois actions also follows since the equivalence
in Lemma 5.10 is a categorical one, so arrows corresponding to Galois action
are also preserved.
Conversely, let N be the image of the functor

T → (T ⊗Zp W (C♭))H=1 deperfection
→ (·)

in Corollary 5.8. Then by definition, N is a (ϕ,Γ)-module over AK such that

N ⊗AK W ((K(ζp∞)∧)♭) ∼= (T ⊗Zp W (C♭))H=1.

Since the functor is the quasi-inverse of M → (M⊗AK W (C♭))F⊗φ=1, we have

N ⊗AK W (C♭) ∼= T ⊗Zp W (C♭),

whence
(N ⊗AK A)⊗A W (C♭) ∼= (T ⊗Zp A)⊗A W (C♭).

Then Lemma 5.10 gives us

N ⊗AK A ∼= T ⊗Zp A,

so
N ∼= (T ⊗Zp A)H=1.

We have now proved that the functors in Corollary 5.8 is the same as the
ones described in the statement of the theorem, so we can conclude using
Corollary 5.8.
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